- 2801. Write the parabolae in completed-square form: $y = (x + a)^2 + b$ and $y = (x + c)^2 + d$. Solve for intersections.
- 2802. Work algebraically: substitute $M = \ln R$ into the curve of best fit and simplify.
- 2803. This is a quadratic in $x\sqrt{y}$. Factorise and solve for \sqrt{y} . You only need deal with the cases at the end: remember that \sqrt{y} must be positive.
- 2804. In both cases, we are dealing without replacement. So, the numerators and denominators will change as we move along the (imagined) tree diagram.
 - (a) Multiply probabilities.

COM/FIVETHOUSANDQUESTIONS.

FEEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

- (b) Multiply probabilities and ${}^{4}C_{2}$.
- 2805. Consider a discontinuous function.
- 2806. (a) Find the x intercept in terms of a. Then, using this as a limit, equate one definite integral to the negative of another.
 - (b) Use your value of a.
 - (c) Remember that definite integrals calculate the signed area, not the area.
- 2807. Set the first derivative to zero for SPs. Find the second derivative at these points.
- 2808. The set-minus notation $A \setminus B$ means the same as $A \cap B'$: elements of A minus those of B. A Venn diagram could help for visualisation.
- 2809. To prove "necessary", begin with an AP, and show that the fact about the means is true. To prove "not sufficient", find a counterexample, i.e. a nonarithmetic sequence for which the fact about the means is true.
- 2810. This comes down to showing that the boundary curve of the inequality crosses the circle.
- 2811. This is a two-tailed test. In a two-tailed test, the critical region is split between the two tails.
- 2812. Take the LHS, and write its base as e^k . Simplify and use the fact that the resulting expression is symmetrical in the variables a and b.
- 2813. (a) Reflect the negative values of f(x) in the x axis.
 - (b) Include extra negative value of y wherever there are positive values of y in the original graph.
 - (c) This graph consists of the graphs in (a) and(b) superimposed.

- 2814. Set up the equation $m_1m_2 = -1$, and show that it has no real roots.
- 2815. The population is small, so you need to consider binomial probabilities *without replacement*. Find the probability that all five of the sample values are below the upper quartile, and subtract your number from 1.
- 2816. (a) Rearrange each equation with the trig function as the subject, and use the first Pythagorean identity.
 - (b) Find x and y. Consider the ranges of these. You don't need to find explicit values of t: all that matters are the respective values of sin t and cos t.
- 2817. Translate into algebra, and solve.
- 2818. Only one of these is true.
- 2819. Complete the square on the first parabola.
- 2820. Consider the possibility space as a unit square with vertices at (0,0), (1,0), (1,1) and (0,1).
- 2821. The index is $\frac{3}{4}$, which requires calculation of a fourth root. This is only well defined for non-negative inputs. Hence, consider the range of $6\cos x + 7\sin x 9$. Note that the amplitude of $a\cos x + b\sin x$ is $\sqrt{a^2 + b^2}$.
- 2822. (a) Your force diagram should contain four forces: reaction, friction, tension and weight.
 - (b) The triangle in the question is isosceles. Split it in two (on your force diagram) by connecting A to M, the midpoint of BP. Let $\angle BAP = 2\theta$, so that $\angle AMP = \theta$ and the angle of inclination of the rod is $90^{\circ} - 2\theta$.

Then take moments around A. The reaction and the friction have no moment. Show that the moment of the

- tension is $T \cos \theta$, and of
- the weight is $mg \times \frac{1}{2}\cos(90^\circ 2\theta)$.

From here, use a couple of trig identities to simplify, and equate the moments.

- 2823. The radii can be pictured as 1, 2, 3, ..., which is an example of such an AP.
- 2824. Differentiate the formula $l = r\theta$ wrt time.
- 2825. Replace one of the inputs with its negative.
- 2826. Rearrange in order to use the third Pythagorean trig identity.

EEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

- 2828. Differentiate both sides to set up a DE. Solve this by separation of variables and then integration.
- 2829. This is not true. Find a counterexample for which $f^2(k) = k$, but for which $f(k) \neq k$.
- 2830. (a) Sketch such a curve to see what is going on. The quartic $y = (x - 1)(x - 2)(x - 3)^2$ is a simple version.
 - (b) Consider the first derivative.
- 2831. Take the factor $(1+x+x^2)$ out of the sum, leaving a GP to sum.
- 2832. Place one person, and then their partner.
- 2833. Find an explicit counterexample: two functions f and g which are not identical, but whose definite integrals are nevertheless equal. The simplest way of doing this is to have functions whose integral is always zero, but which differ at x = 0. Note that the functions do not have to be continuous.
- 2834. Find the equations of the tangent lines at $x = \pm q$. Show that they have the same y intercept.
- 2835. Without loss of generality, take $\mathbf{p} = \mathbf{i}$ and $\mathbf{q} = k\mathbf{j}$.
- 2836. Notice that h' has a double root at x = 1. Express this algebraically, and integrate.
- 2837. Begin with the LHS, and multiply top and bottom by $(1 + \sin \theta)$.
- 2838. The relevant definitions are:
 - An even function has f(-x) ≡ f(x), so that y = f(x) has reflective symmetry in the y axis.
 An odd function has f(-x) ≡ - f(x), so that
 - (2) An odd function has $f(-x) \equiv -f(x)$, so that y = f(x) rotational symmetry around O.
- 2839. Integrate both velocities definitely between t = 0and t = T. Equate the displacements, and show that the resulting equation has no roots other than T = 0.
- 2840. Take logs (over base a) of both sides of the first equation. Use a log rule to write this as a linear equation in $\log_a x$ and $\log_a y$. The second equation is quadratic in these variable. Either set $p = \log_a x$ and $q = \log_a y$, or solve directly.
- 2841. Exactly one equation could generate the graph.

- 2842. The root itself isn't a nice number, so you can't use it to factorise. Instead, show that the curve $y = 4x^3 + 7x 8$ has no stationary points, and hence that it is increasing everywhere.
- 2843. The region in question is a square. Sketch the boundary equations.
- 2844. One of these is definitely larger than the other.
- 2845. Solving for intersections yields a non-analytically solvable equation. So, set the first derivative to 2 instead.
- 2846. Consider the number of rearrangements of seven different letters, divided by an overcounting factor 3!.
- 2847. (a) The vertices are at the x values which produce mod inputs of 0.
 - (b) The vertices divide the domain \mathbb{R} into three regions. In each region, use either |*| = (*) or |*| = -(*) for each mod sign, depending on whether its input * is positive or negative.
 - (c) Just join the dots!
- 2848. Assume the cube has unit side length. Find the lengths of the relevant diagonals by Pythagoras. Together with a side of length 1, the face and space diagonals form a right-angled triangle.
- 2849. Quote a result for the derivative of $\cot x$. Then use the third Pythagorean trig identity.
- 2850. Prove this by contradiction. Firstly assume that neither SP is a point of inflection. Then secondly assume that both SPs are points of inflection. Both cases produce the same contradiction, concerning the gradient of the curve as $x \to \pm \infty$.
- 2851. Sketch the boundary equations. Consider carefully the location of the vertex of the mod graph, as compared to the parabola.
- 2852. Consider the behaviour of $\sec\theta$ as $\theta\to 0.$
- 2853. Neither is true. Find a counterexample to each.
- 2854. Substitute the latter into the former, and look for a double root.
- 2855. Find the accelerations a_1 , a_2 of the two systems. Then add the magnitudes of these accelerations to find the "acceleration" of the gap size. Use *suvat* on this, with a displacement of 0.5 m.

FEEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

EEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

- 2857. (a) The sagitta makes up the outer portion of a radius.
 - (b) Express the distance from the centre of the circle to the midpoint of the chord as (r x). Then set up Pythagoras and rearrange to make r the subject.

2858. Use a double-angle formula.

- 2859. Assume, for a contradiction, that g(x) has even degree. Show that
 - (1) y = g(x) has at least one SP,
 - (2) y = g(x) has no SPs.

This is a contradiction.

- 2860. The boundary equation has no real roots. But the inequality is satisfied one side of the x value at which the fraction is undefined.
- 2861. Use an input transformation: replace y by \ldots
- 2862. (a) Use Pythagoras.
 - (b) Set the squared distance to 18, and solve the resulting boundary equation. Then consider the inequality itself.
- 2863. The best linear approximation is the tangent.
- 2864. (a) Consider the factors of the bases.
 - (b) Use the factor theorem.

2865. Split the fraction up, integrate and simplify.

- 2866. Assume, for a contradiction, that two of the lines of action intersect at P and the other doesn't pass through P. Consider moments about P.
- 2867. (a) Evaluate the derivative and use the formula $y y_1 = m(x x_1).$
 - (b) Take out a squared factor corresponding to the double root at the point of tangency.

2868. This is a quadratic in $\ln x$.

2869. Use the parametric integration formula

$$A = \int_{t_1}^{t_2} y \frac{dx}{dt} \, dt.$$

Solve y = 0 to find the limits t_1 and t_2 , and set up a definite integral with respect to t.

- 2870. Assume, for a contradiction, that the polynomial f is periodic, with period T. So, f(nT) = f(0) for all $n \in \mathbb{Z}$. Consider the number of roots of the equation f(x) = f(0).
- 2871. Two are true and one is false.
- 2872. The greatest and least values of n are 9 and 1.
- 2873. Set up an equation to zero and factorise. Justify the fact that one of the factors does not produce any roots.
- 2874. Show that the graph has two symmetrical SPs in the correct locations, one max and one min. Also, consider axis intercepts and behaviour as $x \to \pm \infty$. You could also show that the curve has odd symmetry.
- 2875. Use the quadratic discriminant, noting that one value of m stops the curve being a quadratic at all.
- 2876. Translate into algebra, starting with $x^2y^3 = a$ for some constant a. Rearrange to make y the subject. Evaluate the derivative at the relevant points.
- 2877. Evaluate the four end-of-branch probabilities.
- 2878. Differentiate by the chain rule and simplify. You'll then need to multiply the top and bottom of the resulting fraction by $x \sqrt{1 + x^2}$: the technique for rationalising the denominator of a surd.
- 2879. Call the forces A and P_1, P_2, P_3 . Then consider the resultant force in the direction of A.
- 2880. Solve y = 8, and find the equation of the tangent line at this point.
- 2881. There are two ways to get terms in x^7 , by selecting
 - (1) three instances of x^2 , one of x and one of 1,
 - (2) two instances of x^2 and three of x.
- 2882. Only one of these is true.

V1

- 2883. Enact the differential operator, and rearrange for $\frac{dy}{dx}$.
- 2884. The implication doesn't go both ways.
- 2885. Use the first Pythagorean trig identity.
- 2886. (a) Draw a force diagram for the kite.
 - (b) Consider the horizontal component of tension, acting on the boy.
 - (c) Draw a force diagram for the boy.

FEEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

V

WW.GILESHAYTER.COM/FIVETHOUSANDQUESTIONS.A

then the adjutants.

2887. Choose the chairperson first, then the secretaries,

- $2888. \ {\rm Only}$ one of these is true.
- 2889. This is a quadratic in x^2 ; factorise it.

2890. There are six ways in which this can happen:

1, 2, 3, 4, 5	1, 2, 4, 5, 6
1, 2, 3, 4, 6	1, 3, 4, 5, 6
1, 2, 3, 5, 6	2, 3, 4, 5, 6.

2891. It is not possible.

- 2892. Use the factorial definition of ${}^{n}\mathrm{C}_{r}.$
- 2893. Solve each inequalities separately, then describe the union of the solution sets.
- 2894. Find the t values associated with the endpoints of the region, by solving x = 0 and y = 0. Then set up the definite integral and find its value.
- 2895. Sketch the curves, then use the standard method for calculating the area of a segment.
- 2896. Assume, for a contradiction, that there is such a polynomial function f, for which $f(x) \equiv e^x$. Then consider f'(x).
- 2897. Solve for intersections, and look for double roots in the resulting polynomial.
- 2898. Use the second Pythagorean trig identity on the second equation.
- 2899. Find $\frac{dy}{dx}$ in terms of t using the chain rule (also known as the parametric differentiation formula). Then sub into the LHS of the DE and rearrange to the RHS.
- 2900. Consider the situation graphically, noting that the parabolae are reflections of one another in the line y = x. Work out how many intersections there are when a = 0 and $a \to \pm$. At the boundaries between behaviours, the curves must be tangent.

—— End of 29th Hundred ——